Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurochem ; 168(3): 238-250, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38332572

RESUMEN

Deciphering the molecular pathways associated with N-methyl-D-aspartate receptor (NMDAr) hypofunction and its interaction with antipsychotics is necessary to advance our understanding of the basis of schizophrenia, as well as our capacity to treat this disease. In this regard, the development of human brain-derived models that are amenable to studying the neurobiology of schizophrenia may contribute to filling the gaps left by the widely employed animal models. Here, we assessed the proteomic changes induced by the NMDA glutamate receptor antagonist MK-801 on human brain slice cultures obtained from adult donors submitted to respective neurosurgery. Initially, we demonstrated that MK-801 diminishes NMDA glutamate receptor signaling in human brain slices in culture. Next, using mass-spectrometry-based proteomics and systems biology in silico analyses, we found that MK-801 led to alterations in proteins related to several pathways previously associated with schizophrenia pathophysiology, including ephrin, opioid, melatonin, sirtuin signaling, interleukin 8, endocannabinoid, and synaptic vesicle cycle. We also evaluated the impact of both typical and atypical antipsychotics on MK-801-induced proteome changes. Interestingly, the atypical antipsychotic clozapine showed a more significant capacity to counteract the protein alterations induced by NMDAr hypofunction than haloperidol. Finally, using our dataset, we identified potential modulators of the MK-801-induced proteome changes, which may be considered promising targets to treat NMDAr hypofunction in schizophrenia. This dataset is publicly available and may be helpful in further studies aimed at evaluating the effects of MK-801 and antipsychotics in the human brain.


Asunto(s)
Antipsicóticos , Clozapina , Animales , Humanos , Clozapina/farmacología , Haloperidol/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Maleato de Dizocilpina/farmacología , Proteoma/metabolismo , N-Metilaspartato , Ácido Glutámico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteómica , Antipsicóticos/farmacología , Encéfalo/metabolismo
2.
Mol Ther ; 31(2): 409-419, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36369741

RESUMEN

The accumulation of soluble oligomers of the amyloid-ß peptide (AßOs) in the brain has been implicated in synapse failure and memory impairment in Alzheimer's disease. Here, we initially show that treatment with NUsc1, a single-chain variable-fragment antibody (scFv) that selectively targets a subpopulation of AßOs and shows minimal reactivity to Aß monomers and fibrils, prevents the inhibition of long-term potentiation in hippocampal slices and memory impairment induced by AßOs in mice. As a therapeutic approach for intracerebral antibody delivery, we developed an adeno-associated virus vector to drive neuronal expression of NUsc1 (AAV-NUsc1) within the brain. Transduction by AAV-NUsc1 induced NUsc1 expression and secretion in adult human brain slices and inhibited AßO binding to neurons and AßO-induced loss of dendritic spines in primary rat hippocampal cultures. Treatment of mice with AAV-NUsc1 prevented memory impairment induced by AßOs and, remarkably, reversed memory deficits in aged APPswe/PS1ΔE9 Alzheimer's disease model mice. These results support the feasibility of immunotherapy using viral vector-mediated gene delivery of NUsc1 or other AßO-specific single-chain antibodies as a potential therapeutic approach in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Anticuerpos de Cadena Única , Ratones , Ratas , Humanos , Animales , Anciano , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/metabolismo , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Sinapsis/metabolismo , Neuronas/metabolismo , Trastornos de la Memoria/genética , Trastornos de la Memoria/terapia
3.
J Neurochem ; 163(2): 113-132, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35880385

RESUMEN

COVID-19 causes more than million deaths worldwide. Although much is understood about the immunopathogenesis of the lung disease, a lot remains to be known on the neurological impact of COVID-19. Here, we evaluated immunometabolic changes using astrocytes in vitro and dissected brain areas of SARS-CoV-2 infected Syrian hamsters. We show that SARS-CoV-2 alters proteins of carbon metabolism, glycolysis, and synaptic transmission, many of which are altered in neurological diseases. Real-time respirometry evidenced hyperactivation of glycolysis, further confirmed by metabolomics, with intense consumption of glucose, pyruvate, glutamine, and alpha ketoglutarate. Consistent with glutamine reduction, the blockade of glutaminolysis impaired viral replication and inflammatory response in vitro. SARS-CoV-2 was detected in vivo in hippocampus, cortex, and olfactory bulb of intranasally infected animals. Our data evidence an imbalance in important metabolic molecules and neurotransmitters in infected astrocytes. We suggest this may correlate with the neurological impairment observed during COVID-19, as memory loss, confusion, and cognitive impairment.


Asunto(s)
COVID-19 , Animales , Astrocitos , Carbono , Cricetinae , Modelos Animales de Enfermedad , Glucosa , Glutamina , Ácidos Cetoglutáricos , Mesocricetus , Piruvatos , SARS-CoV-2
4.
Mol Neurobiol ; 59(6): 3721-3737, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35378696

RESUMEN

Studies have suggested an important connection between epilepsy and Alzheimer's disease (AD), mostly due to the high number of patients diagnosed with AD who develop epileptic seizures later on. However, this link is not well understood. Previous studies from our group have identified memory impairment and metabolic abnormalities in the Wistar audiogenic rat (WAR) strain, a genetic model of epilepsy. Our goal was to investigate AD behavioral and molecular alterations, including brain insulin resistance, in naïve (seizure-free) animals of the WAR strain. We used the Morris water maze (MWM) test to evaluate spatial learning and memory performance and hippocampal tissue to verify possible molecular and immunohistochemical alterations. WARs presented worse performance in the MWM test (p < 0.0001), higher levels of hyperphosphorylated tau (S396) (p < 0.0001) and phosphorylated glycogen synthase kinase 3 (S21/9) (p < 0.05), and lower insulin receptor levels (p < 0.05). Conversely, WARs and Wistar controls present progressive increase in amyloid fibrils (p < 0.0001) and low levels of soluble amyloid-ß. Interestingly, the detected alterations were age-dependent, reaching larger differences in aged than in young adult animals. In summary, the present study provides evidence of a partial AD-like phenotype, including altered regulation of insulin signaling, in a genetic model of epilepsy. Together, these data contribute to the understanding of the connection between epilepsy and AD as comorbidities. Moreover, since both tau hyperphosphorylation and altered insulin signaling have already been reported in epilepsy and AD, these two events should be considered as important components in the interconnection between epilepsy and AD pathogenesis and, therefore, potential therapeutic targets in this field.


Asunto(s)
Enfermedad de Alzheimer , Epilepsia , Resistencia a la Insulina , Anciano , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Animales , Epilepsia/genética , Humanos , Insulina/metabolismo , Resistencia a la Insulina/genética , Aprendizaje por Laberinto/fisiología , Modelos Genéticos , Fenotipo , Ratas , Ratas Wistar , Proteínas tau/metabolismo
6.
Front Neurosci ; 15: 674576, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34887719

RESUMEN

Oropouche virus (OROV) is an emerging arbovirus in South and Central Americas with high spreading potential. OROV infection has been associated with neurological complications and OROV genomic RNA has been detected in cerebrospinal fluid from patients, suggesting its neuroinvasive potential. Motivated by these findings, neurotropism and neuropathogenesis of OROV have been investigated in vivo in murine models, which do not fully recapitulate the complexity of the human brain. Here we have used slice cultures from adult human brains to investigate whether OROV is capable of infecting mature human neural cells in a context of preserved neural connections and brain cytoarchitecture. Our results demonstrate that human neural cells can be infected ex vivo by OROV and support the production of infectious viral particles. Moreover, OROV infection led to the release of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) and diminished cell viability 48 h post-infection, indicating that OROV triggers an inflammatory response and tissue damage. Although OROV-positive neurons were observed, microglia were the most abundant central nervous system (CNS) cell type infected by OROV, suggesting that they play an important role in the response to CNS infection by OROV in the adult human brain. Importantly, we found no OROV-infected astrocytes. To the best of our knowledge, this is the first direct demonstration of OROV infection in human brain cells. Combined with previous data from murine models and case reports of OROV genome detection in cerebrospinal fluid from patients, our data shed light on OROV neuropathogenesis and help raising awareness about acute and possibly chronic consequences of OROV infection in the human brain.

7.
Biosci Rep ; 41(3)2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33629708

RESUMEN

Tau is a microtubule-associated protein (MAP) responsible for controlling the stabilization of microtubules in neurons. Tau function is regulated by phosphorylation. However, in some neurological diseases Tau becomes aberrantly hyperphosphorylated, which contributes to the pathogenesis of neurological diseases, known as tauopathies. Western blotting (WB) has been widely employed to determine Tau levels in neurological disease models. However, Tau quantification by WB should be interpreted with care, as this approach has been recognized as prone to produce artifactual results if not properly performed. In the present study, our goal was to evaluate the influence of a freeze-and-thaw cycle, a common procedure preceding WB, to the integrity of Tau in brain homogenates from rats, 3xTg-AD mice and human samples. Homogenates were prepared in ice-cold RIPA buffer supplemented with protease/phosphatase inhibitors. Immediately after centrifugation, an aliquot of the extracts was analyzed via WB to quantify total and phosphorylated Tau levels. The remaining aliquots of the same extracts were stored for at least 2 weeks at either -20 or -80°C and then subjected to WB. Extracts from rodent brains submitted to freeze-and-thaw presented a ∼25 kDa fragment immunoreactive to anti-Tau antibodies. An in-gel digestion followed by mass spectrometry (MS) analysis in excised bands revealed this ∼25 kDa species corresponds to a Tau fragment. Freeze-and-thaw-induced Tau proteolysis was detected even when extracts were stored at -80°C. This phenomenon was not observed in human samples at any storage condition tested. Based on these findings, we strongly recommend the use of fresh extracts of brain samples in molecular analysis of Tau levels in rodents.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Criopreservación/métodos , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Humanos , Inmunohistoquímica/métodos , Proteolisis , Ratas , Ratas Wistar , Proteínas tau/toxicidad
8.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255488

RESUMEN

The accumulation of amyloid protein aggregates in tissues is the basis for the onset of diseases known as amyloidoses. Intriguingly, many amyloidoses impact the central nervous system (CNS) and usually are devastating diseases. It is increasingly apparent that neurotoxic soluble oligomers formed by amyloidogenic proteins are the primary molecular drivers of these diseases, making them lucrative diagnostic and therapeutic targets. One promising diagnostic/therapeutic strategy has been the development of antibody fragments against amyloid oligomers. Antibody fragments, such as fragment antigen-binding (Fab), scFv (single chain variable fragments), and VHH (heavy chain variable domain or single-domain antibodies) are an alternative to full-length IgGs as diagnostics and therapeutics for a variety of diseases, mainly because of their increased tissue penetration (lower MW compared to IgG), decreased inflammatory potential (lack of Fc domain), and facile production (low structural complexity). Furthermore, through the use of in vitro-based ligand selection, it has been possible to identify antibody fragments presenting marked conformational selectivity. In this review, we summarize significant reports on antibody fragments selective for oligomers associated with prevalent CNS amyloidoses. We discuss promising results obtained using antibody fragments as both diagnostic and therapeutic agents against these diseases. In addition, the use of antibody fragments, particularly scFv and VHH, in the isolation of unique oligomeric assemblies is discussed as a strategy to unravel conformational moieties responsible for neurotoxicity. We envision that advances in this field may lead to the development of novel oligomer-selective antibody fragments with superior selectivity and, hopefully, good clinical outcomes.


Asunto(s)
Amiloide/inmunología , Amiloidosis/diagnóstico , Síndromes de Neurotoxicidad/diagnóstico , Agregación Patológica de Proteínas/diagnóstico , Amiloide/antagonistas & inhibidores , Amiloidosis/inmunología , Amiloidosis/patología , Animales , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/patología , Humanos , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos de Inmunoglobulinas/inmunología , Síndromes de Neurotoxicidad/inmunología , Síndromes de Neurotoxicidad/patología , Fragmentos de Péptidos/inmunología , Agregación Patológica de Proteínas/inmunología , Anticuerpos de Dominio Único , Relación Estructura-Actividad
9.
Neurotox Res ; 38(4): 871-886, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32524380

RESUMEN

Sepsis-associated encephalopathy causes brain dysfunction that can result in cognitive impairments in sepsis survivor patients. In previous work, we showed that simvastatin attenuated oxidative stress in brain structures related to memory in septic rats. However, there is still a need to evaluate the long-term impact of simvastatin administration on brain neurodegenerative processes and cognitive damage in sepsis survivors. Here, we investigated the possible neuroprotective role of simvastatin in neuroinflammation, and neurodegeneration conditions of brain structures related to memory in rats at 10 days after sepsis survival. Male Wistar rats (250-300 g) were submitted to cecal ligation and puncture (CLP, n = 42) or remained as non-manipulated (naïve, n = 30). Both groups were treated (before and after the surgery) by gavage with simvastatin (20 mg/kg) or an equivalent volume of saline and observed for 10 days. Simvastatin-treated rats that survived to sepsis showed a reduction in the levels of nitrate, IL1-ß, and IL-6 and an increase in Bcl-2 protein expression in the prefrontal cortex and hippocampus, and synaptophysin only in the hippocampus. Immunofluorescence revealed a reduction of glial activation, neurodegeneration, apoptosis, and amyloid aggregates confirmed by quantification of GFAP, Iba-1, phospho Ser396-tau, total tau, cleaved caspase-3, and thioflavin-S in the prefrontal cortex and hippocampus. In addition, treated animals presented better performance in tasks involving habituation memory, discriminative, and aversive memory. These results suggest that statins exert a neuroprotective role by upregulation of the Bcl-2 and gliosis reduction, which may prevent the cognitive deficit observed in sepsis survivor animals.


Asunto(s)
Encéfalo/efectos de los fármacos , Disfunción Cognitiva/prevención & control , Enfermedades Neurodegenerativas/tratamiento farmacológico , Sepsis/tratamiento farmacológico , Simvastatina/uso terapéutico , Animales , Encéfalo/metabolismo , Encéfalo/patología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Ratas , Ratas Wistar , Sepsis/metabolismo , Sepsis/patología , Simvastatina/farmacología
10.
J Vis Exp ; (153)2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31762466

RESUMEN

Organotypic, or slice cultures, have been widely employed to model aspects of the central nervous system functioning in vitro. Despite the potential of slice cultures in neuroscience, studies using adult nervous tissue to prepare such cultures are still scarce, particularly those from human subjects. The use of adult human tissue to prepare slice cultures is particularly attractive to enhance the understanding of human neuropathologies, as they hold unique properties typical of the mature human brain lacking in slices produced from rodent (usually neonatal) nervous tissue. This protocol describes how to use brain tissue collected from living human donors submitted to resective brain surgery to prepare short-term, free-floating slice cultures. Procedures to maintain and perform biochemical and cell biology assays using these cultures are also presented. Representative results demonstrate that the typical human cortical lamination is preserved in slices after 4 days in vitro (DIV4), with expected presence of the main neural cell types. Moreover, slices at DIV4 undergo robust cell death when challenged with a toxic stimulus (H2O2), indicating the potential of this model to serve as a platform in cell death assays. This method, a simpler and cost-effective alternative to the widely used protocol using membrane inserts, is mainly recommended for running short-term assays aimed to unravel mechanisms of neurodegeneration behind age-associated brain diseases. Finally, although the protocol is devoted to using cortical tissue collected from patients submitted to surgical treatment of pharmacoresistant temporal lobe epilepsy, it is argued that tissue collected from other brain regions/conditions should also be considered as sources to produce similar free-floating slice cultures.


Asunto(s)
Encéfalo/citología , Neuronas/fisiología , Adulto , Animales , Encéfalo/metabolismo , Muerte Celular , Humanos , Peróxido de Hidrógeno/metabolismo , Técnicas de Cultivo de Órganos
11.
Neurosci Lett ; 696: 219-224, 2019 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-30610890

RESUMEN

Eukaryotic mRNA precursors are co-transcriptionally assembled into ribonucleoprotein complexes. Heterogeneous nuclear ribonucleoprotein (hnRNP) complexes are involved in mRNA translocation, stability, subcellular localization and regulation of mRNA translation. About 20 major classes of hnRNPs have been identified in mammals. In a previous work, we characterized a novel, strongly-basic, RNA-binding protein (p65) in presynaptic terminals of squid neurons presenting homology with human hnRNPA/B type proteins, likely involved in local mRNA processing. We have identified and sequenced two hnRNPA/B-like proteins associated with tissue purified squid p65: Protein 1 (36.3 kDa, IP 7.1) and Protein 2 (37.6 kDa, IP 8.9). In the present work we generated an in silico, tridimensional, structural model of squid hnRNPA/B-like Protein 2, which showed highly conserved secondary and tertiary structure of RNA recognition motifs with human hnRNPA1 protein, as well as illustrated the potential for squid Protein 2 stable homodimerization. This was supported by biophysical measurements of bacterially expressed, recombinant protein. In addition, we induced expression of squid hnRNPA/B-like Protein 2 in human neuroblastoma cells (SH-SY5Y) and observed an exclusively nuclear localization, which depended on an intact C-terminal amino acid sequence and which relocated to cytoplasm particles containing PABP when the cells were challenged with sorbitol, suggesting an involvement with stress granule function.


Asunto(s)
Encéfalo/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/genética , Animales , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Decapodiformes , Dimerización , Humanos , Proteínas de Unión al ARN/genética , Ribonucleoproteínas/metabolismo
12.
J Neurosci Methods ; 307: 203-209, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29859877

RESUMEN

BACKGROUND: Slice cultures have been prepared from several organs. With respect to the brain, advantages of slice cultures over dissociated cell cultures include maintenance of the cytoarchitecture and neuronal connectivity. Slice cultures from adult human brain have been reported and constitute a promising method to study neurological diseases. Despite this potential, few studies have characterized in detail cell survival and function along time in short-term, free-floating cultures. NEW METHOD: We used tissue from adult human brain cortex from patients undergoing temporal lobectomy to prepare 200 µm-thick slices. Along the period in culture, we evaluated neuronal survival, histological modifications, and neurotransmitter release. The toxicity of Alzheimer's-associated Aß oligomers (AßOs) to cultured slices was also analyzed. RESULTS: Neurons in human brain slices remain viable and neurochemically active for at least four days in vitro, which allowed detection of binding of AßOs. We further found that slices exposed to AßOs presented elevated levels of hyperphosphorylated Tau, a hallmark of Alzheimer's disease. COMPARISON WITH EXISTING METHOD(S): Although slice cultures from adult human brain have been previously prepared, this is the first report to analyze cell viability and neuronal activity in short-term free-floating cultures as a function of days in vitro. CONCLUSIONS: Once surgical tissue is available, the current protocol is easy to perform and produces functional slices from adult human brain. These slice cultures may represent a preferred model for translational studies of neurodegenerative disorders when long term culturing in not required, as in investigations on AßO neurotoxicity.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/farmacología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Neuronas/metabolismo , Neurotransmisores/metabolismo , Adulto , Análisis de Varianza , Epilepsia del Lóbulo Temporal/patología , Femenino , Humanos , Técnicas In Vitro , Masculino , Persona de Mediana Edad , Técnicas de Cultivo de Órganos , Fosfopiruvato Hidratasa/metabolismo , Cloruro de Potasio/farmacología , Proteínas tau/metabolismo
13.
J Neurochem ; 142(6): 934-947, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28670737

RESUMEN

Brain accumulation of soluble oligomers of the amyloid-ß peptide (AßOs) is increasingly considered a key early event in the pathogenesis of Alzheimer's disease (AD). A variety of AßO species have been identified, both in vitro and in vivo, ranging from dimers to 24mers and higher order oligomers. However, there is no consensus in the literature regarding which AßO species are most germane to AD pathogenesis. Antibodies capable of specifically recognizing defined subpopulations of AßOs would be a valuable asset in the identification, isolation, and characterization of AD-relevant AßO species. Here, we report the characterization of a human single chain antibody fragment (scFv) denoted NUsc1, one of a number of scFvs we have identified that stringently distinguish AßOs from both monomeric and fibrillar Aß. NUsc1 readily detected AßOs previously bound to dendrites in cultured hippocampal neurons. In addition, NUsc1 blocked AßO binding and reduced AßO-induced neuronal oxidative stress and tau hyperphosphorylation in cultured neurons. NUsc1 further distinguished brain extracts from AD-transgenic mice from wild type (WT) mice, and detected endogenous AßOs in fixed AD brain tissue and AD brain extracts. Biochemical analyses indicated that NUsc1 targets a subpopulation of AßOs with apparent molecular mass greater than 50 kDa. Results indicate that NUsc1 targets a particular AßO species relevant to AD pathogenesis, and suggest that NUsc1 may constitute an effective tool for AD diagnostics and therapeutics.

14.
ACS Chem Neurosci ; 5(12): 1238-45, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25343357

RESUMEN

Alzheimer's disease (AD), the most prevalent type of dementia, has been associated with the accumulation of amyloid ß oligomers (AßOs) in the central nervous system. AßOs vary widely in size, ranging from dimers to larger than 100 kDa. Evidence indicates that not all oligomers are toxic, and there is yet no consensus on the size of the actual toxic oligomer. Here we used NU4, a conformation-dependent anti-AßO monoclonal antibody, to investigate size and shape of a toxic AßO assembly. By using size-exclusion chromatography and immuno-based detection, we isolated an AßO-NU4 complex amenable for biochemical and morphological studies. The apparent molecular mass of the NU4-targeted oligomer was 80 kDa. Atomic force microscopy imaging of the AßO-NU4 complex showed a size distribution centered at 5.37 nm, an increment of 1.5 nm compared to the size of AßOs (3.85 nm). This increment was compatible with the size of NU4 (1.3 nm), suggesting a 1:1 oligomer to NU4 ratio. NU4-reactive oligomers extracted from AD human brain concentrated in a molecular mass range similar to that found for in vitro prepared oligomers, supporting the relevance of the species herein studied. These results represent an important step toward understanding the connection between AßO size and toxicity.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/inmunología , Péptidos beta-Amiloides/toxicidad , Anticuerpos/toxicidad , Encéfalo/metabolismo , Neuronas/efectos de los fármacos , Animales , Células Cultivadas , Cromatografía en Gel , Embrión de Mamíferos , Femenino , Hipocampo/citología , Humanos , Inmunotoxinas/toxicidad , Microscopía de Fuerza Atómica , Neuronas/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley
15.
J Neurosci ; 33(23): 9626-34, 2013 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-23739959

RESUMEN

Brain accumulation of soluble amyloid-ß oligomers (AßOs) has been implicated in synapse failure and cognitive impairment in Alzheimer's disease (AD). However, whether and how oligomers of different sizes induce synapse dysfunction is a matter of controversy. Here, we report that low-molecular-weight (LMW) and high-molecular-weight (HMW) Aß oligomers differentially impact synapses and memory. A single intracerebroventricular injection of LMW AßOs (10 pmol) induced rapid and persistent cognitive impairment in mice. On the other hand, memory deficit induced by HMW AßOs (10 pmol) was found to be reversible. While memory impairment in LMW oligomer-injected mice was associated with decreased hippocampal synaptophysin and GluN2B immunoreactivities, synaptic pathology was not detected in the hippocampi of HMW oligomer-injected mice. On the other hand, HMW oligomers, but not LMW oligomers, induced oxidative stress in hippocampal neurons. Memantine rescued both neuronal oxidative stress and the transient memory impairment caused by HMW oligomers, but did not prevent the persistent cognitive deficit induced by LMW oligomers. Results establish that different Aß oligomer assemblies act in an orchestrated manner, inducing different pathologies and leading to synapse dysfunction. Furthermore, results suggest a mechanistic explanation for the limited efficacy of memantine in preventing memory loss in AD.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/toxicidad , Trastornos del Conocimiento/inducido químicamente , Trastornos del Conocimiento/tratamiento farmacológico , Memantina/farmacología , Fragmentos de Péptidos/farmacología , Péptidos beta-Amiloides/antagonistas & inhibidores , Animales , Células Cultivadas , Trastornos del Conocimiento/metabolismo , Masculino , Ratones , Peso Molecular , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/química , Fragmentos de Péptidos/toxicidad , Ratas
16.
ACS Chem Neurosci ; 3(11): 972-81, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23173076

RESUMEN

Amyloid ß42 self-assembly is complex, with multiple pathways leading to large insoluble fibrils or soluble oligomers. Oligomers are now regarded as most germane to Alzheimer's pathogenesis. We have investigated the hypothesis that oligomer formation itself occurs through alternative pathways, with some leading to synapse-binding toxins. Immediately after adding synthetic peptide to buffer, solutions of Aß42 were separated by a 50 kDa filter and fractions assessed by SDS-PAGE silver stain, Western blot, immunoprecipitation, and capacity for synaptic binding. Aß42 rapidly assembled into aqueous-stable oligomers, with similar protein abundance in small (<50 kDa) and large (>50 kDa) oligomer fractions. Initially, both fractions were SDS-labile and resolved into tetramers, trimers, and monomers by SDS-PAGE. Upon continued incubation, the larger oligomers developed a small population of SDS-stable 10-16mers, and the smaller oligomers generated gel-impermeant complexes. The two fractions associated differently with neurons, with prominent synaptic binding limited to larger oligomers. Even within the family of larger oligomers, synaptic binding was associated with only a subset of these species, as a new scFv antibody (NUsc1) immunoprecipitated only a small portion of the oligomers while eliminating synaptic binding. Interestingly, low doses of the peptide KLVFFA blocked assembly of the 10-16mers, and this result was associated with loss of the smaller clusters of oligomers observed at synaptic sites. What distinguishes these smaller clusters from the unaffected larger clusters is not yet known. Results indicate that distinct species of Aß oligomers are generated by alternative assembly pathways and that synapse-binding subpopulations of Aß oligomers could be specifically targeted for Alzheimer's therapeutics.


Asunto(s)
Péptidos beta-Amiloides/química , Fragmentos de Péptidos/farmacología , Anticuerpos de Cadena Única/farmacología , Sinapsis/química , Western Blotting , Electroforesis en Gel de Poliacrilamida , Humanos , Inmunoprecipitación
17.
J Biol Chem ; 287(10): 7436-45, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22235132

RESUMEN

Cognitive decline in Alzheimer disease (AD) is increasingly attributed to the neuronal impact of soluble oligomers of the amyloid-ß peptide (AßOs). Current knowledge on the molecular and cellular mechanisms underlying the toxicity of AßOs stems largely from rodent-derived cell/tissue culture experiments or from transgenic models of AD, which do not necessarily recapitulate the complexity of the human disease. Here, we used DNA microarray and RT-PCR to investigate changes in transcription in adult human cortical slices exposed to sublethal doses of AßOs. The results revealed a set of 27 genes that showed consistent differential expression upon exposure of slices from three different donors to AßOs. Functional classification of differentially expressed genes revealed that AßOs impact pathways important for neuronal physiology and known to be dysregulated in AD, including vesicle trafficking, cell adhesion, actin cytoskeleton dynamics, and insulin signaling. Most genes (70%) were down-regulated by AßO treatment, suggesting a predominantly inhibitory effect on the corresponding pathways. Significantly, AßOs induced down-regulation of synaptophysin, a presynaptic vesicle membrane protein, suggesting a mechanism by which oligomers cause synapse failure. The results provide insight into early mechanisms of pathogenesis of AD and suggest that the neuronal pathways affected by AßOs may be targets for the development of novel diagnostic or therapeutic approaches.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Regulación de la Expresión Génica , Proteínas del Tejido Nervioso/biosíntesis , Adulto , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Encéfalo/patología , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos
18.
Antioxid Redox Signal ; 14(7): 1209-23, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20712397

RESUMEN

Soluble amyloid ß-peptide oligomers (AßOs), increasingly recognized as causative agents of Alzheimer's disease (AD), disrupt neuronal Ca(2+) homeostasis and synaptic function. Here, we report that AßOs at sublethal concentrations generate prolonged Ca(2+) signals in primary hippocampal neurons; incubation in Ca(2+)-free solutions, inhibition of ryanodine receptors (RyRs) or N-methyl-d-aspartate receptors (NMDARs), or preincubation with N-acetyl-l-cysteine abolished these signals. AßOs decreased (6 h) RyR2 and RyR3 mRNA and RyR2 protein, and promoted mitochondrial fragmentation after 24 h. NMDAR inhibition abolished the RyR2 decrease, whereas RyR inhibition prevented significantly the RyR2 protein decrease and mitochondrial fragmentation induced by AßOs. Incubation with AßOs (6 h) eliminated the RyR2 increase induced by brain-derived nerve factor (BDNF) and the dendritic spine remodeling induced within minutes by BDNF or the RyR agonist caffeine. Addition of BDNF to neurons incubated with AßOs for 24 h, which had RyR2 similar to and slightly higher RyR3 protein content than those of controls, induced dendritic spine growth but at slower rates than in controls. These combined effects of sublethal AßOs concentrations (which include redox-sensitive stimulation of RyR-mediated Ca(2+) release, decreased RyR2 protein expression, mitochondrial fragmentation, and prevention of RyR-mediated spine remodeling) may contribute to impairing the synaptic plasticity in AD.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Factor Neurotrófico Derivado del Encéfalo/farmacología , Calcio/metabolismo , Espinas Dendríticas/metabolismo , Hipocampo/citología , Mitocondrias/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citocromos c/metabolismo , Regulación hacia Abajo , Hipocampo/metabolismo , Humanos , Ratas , Ratas Sprague-Dawley , Rianodina/farmacología , Canal Liberador de Calcio Receptor de Rianodina/genética , Transcripción Genética
19.
Neurotox Res ; 18(2): 112-23, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19949915

RESUMEN

2,4-Dinitrophenol (DNP) is classically known as a mitochondrial uncoupler and, at high concentrations, is toxic to a variety of cells. However, it has recently been shown that, at subtoxic concentrations, DNP protects neurons against a variety of insults and promotes neuronal differentiation and neuritogenesis. The molecular and cellular mechanisms underlying the beneficial neuroactive properties of DNP are still largely unknown. We have now used DNA microarray analysis to investigate changes in gene expression in rat hippocampal neurons in culture treated with low micromolar concentrations of DNP. Under conditions that did not affect neuronal viability, high-energy phosphate levels or mitochondrial oxygen consumption, DNP induced up-regulation of 275 genes and down-regulation of 231 genes. Significantly, several up-regulated genes were linked to intracellular cAMP signaling, known to be involved in neurite outgrowth, synaptic plasticity, and neuronal survival. Differential expression of specific genes was validated by quantitative RT-PCR using independent samples. Results shed light on molecular mechanisms underlying neuroprotection by DNP and point to possible targets for development of novel therapeutics for neurodegenerative disorders.


Asunto(s)
2,4-Dinitrofenol/farmacología , AMP Cíclico/genética , Hipocampo/metabolismo , Fármacos Neuroprotectores/farmacología , Transducción de Señal/genética , Regulación hacia Arriba/efectos de los fármacos , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Técnicas de Cultivo de Célula , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Hipocampo/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Consumo de Oxígeno/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
20.
J Neurochem ; 103(2): 736-48, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17727639

RESUMEN

Protein aggregation and amyloid accumulation in different tissues are associated with cellular dysfunction and toxicity in important human pathologies, including Alzheimer's disease and various forms of systemic amyloidosis. Soluble oligomers formed at the early stages of protein aggregation have been increasingly recognized as the main toxic species in amyloid diseases. To gain insight into the mechanisms of toxicity instigated by soluble protein oligomers, we have investigated the aggregation of hen egg white lysozyme (HEWL), a normally harmless protein. HEWL initially aggregates into beta-sheet rich, roughly spherical oligomers which appear to convert with time into protofibrils and mature amyloid fibrils. HEWL oligomers are potently neurotoxic to rat cortical neurons in culture, while mature amyloid fibrils are little or non-toxic. Interestingly, when added to cortical neuronal cultures HEWL oligomers induce tau hyperphosphorylation at epitopes that are characteristically phosphorylated in neurons exposed to soluble oligomers of the amyloid-beta peptide. Furthermore, injection of HEWL oligomers in the cerebral cortices of adult rats induces extensive neurodegeneration in different brain areas. These results show that soluble oligomers from a non-disease related protein can mimic specific neuronal pathologies thought to be induced by soluble amyloid-beta peptide oligomers in Alzheimer's disease and support the notion that amyloid oligomers from different proteins may share common structural determinants that would explain their generic cytotoxicities.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Muramidasa/química , Muramidasa/toxicidad , Degeneración Nerviosa/inducido químicamente , Proteínas tau/metabolismo , Animales , Benzotiazoles , Western Blotting , Supervivencia Celular/efectos de los fármacos , Pollos , Cromatografía en Gel , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Epítopos , Femenino , Técnica del Anticuerpo Fluorescente , Colorantes Fluorescentes , Microscopía Electrónica , Nefelometría y Turbidimetría , Neuronas/efectos de los fármacos , Neuronas/patología , Fosforilación , Embarazo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Tiazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...